ACI 2024 Spring Convention NEU Session (March 27)

DE-CNturmoil

(Carbon Neutrality and Sustainability Design of Concrete Structures)

Japan Sustainability Institute Koji Sakai ACI/JCI Honorary Mem., fib Life-Time Mem. Founder of CONSEC/ICCS/ISO-TC71/SC8

Development of Cement/Concrete Technology

- John Smeaton used hydraulic lime as a joint material for granite blocks in the construction of a lighthouse in 1756.
- Joseph Aspdin was granted a patent for the method of producing hydraulic cement in 1824.
- Isamu Hiroi began "100-Year Mortar Durability Tests" in 1897.
- There has been a great development until today, however coal has been used to manufacture cement. Steel production is the same.

De-CarbonNeutralityTurmoil

This presentation clarifies what to do now with a clear vision on the nature of the turmoil concerning carbon neutrality in the field of cement/concrete and discusses measures to take steps forward towards this historic transformation to CN.

What is concrete?

- Concrete is a quite simple material that combines *aggregate*, which accounts for about **70%** of its volume, with cement hydrates. Aggregate is the most abundant material on the earth, and so is *water*, which is necessary for hydration of *cement*. *Limestone*, a raw material of cement, is a substance that has been produced by living organisms over a long time.
- Thus, "concrete has the characteristic of a material that can be used in large quantities.

Global Warming and Carbon Neutrality

- Modern society has been created by the use of fossil fuels.
- ■It is causing a global warming.
- Then, human being has decided not to use fossil fuels, to realize "carbon neutrality," in the future.

Sustainability

UN Definition of Sustainable Development,

"meets the needs of the present without compromising the ability of future generations to meet their own needs" (*Our Common Future,1987*).

"The goals of *economic* and *social* development must be defined in terms of sustainability." The *environmental* capacity has its limitations.

Thus, "sustainability" can be evaluated through environmental, social and economic aspects, which was confirmed in the East Japan Great Earthquake (2011/3/11) **Sustainable use of concrete, CRC Press

How to Realize Sustainability in Concrete Structures?

- Conceptual design, in which BATs and their alterations are taken into account
- Extraction of performance requirements on social, economic and environmental aspects
- Social aspects \rightarrow safety, resilience, aesthetics, etc. (ACI Building Code, fib MC and others)
- Economic aspects (budget) for LCM (fib MC)
- Environmental aspects \rightarrow climate change (CO₂), NR, wastes, contaminations, others (fib MC, ISO13315 series)

Carbon Neutrality Turmoil

- Paris agreement was adopted in 2015 (COP21), a global plan to keep temperature increases well below 2°C above pre-industrial levels, but pursue efforts to <u>1.5 °C</u>
- **COP28(2023):** away from fossil fuels
- There is no exception in concrete industry, but it seems there is still **some turmoil** in our industry, in which the essence of CN is not being understood.

COP28

From fossil fuels to renewable energy

- Targets by 2030
- -Tripling the renewable energy capacity
- Doubling the energy efficiency

Renewable Energy Capacity Top 10 Countries (IRENA)

Renewable Share of Annual Power Capacity Expansion (IRENA)

Renewable share of annual power capacity expansion

Renewables 2023 Analysis and forecasts to 2028 Chapter 1. Electricith

Cumulative renewable electricity capacity in the accelerated case (2022-2028) and Net Zero Scenario (2030)

What is Essence of CN in Cement/Concrete?

- Cement production inevitably generates large amounts of CO₂ from its raw materials and fuels.
- Therefore, reduction of clinker, use of SCMs, change of cement manufacturing by using new fuels like hydrogen, and/or CCUS of emitted CO₂ should be conducted.
- Rational *transition design* to avoid CNturmoil is necessary.

Tools in Transition Design

Hydrogen fuel

SCMS (Blast furnace slag, fly ash etc.) Possible replacement of BFS and FA into cement is 7.3% and 0.27%, respectively.

■ CC(U)S

(U): methanation $CO_2+H_2 \rightarrow CH_4$

Trees, Oceans

"Combinations of each tool makes CN possible?"

How to Reduce CO₂ from Cement **Production by Using Each Tool** ■ Amount of CO₂ emission from cement 4.4 bts x 788.6 kg-CO₂/t = 3.47 bts ■ Possible CO₂ reduction hydrogen 1.37 bts SCMs: 0.25 bts CCS: 0.52 bts (5.6 bts × 9.3% share for ct) $CC(U)S(CO_2+H_2 \rightarrow CH_4???)$

■ Remaining CO₂

3.47 - 1.37 - 0.25 - 0.52 = 1.33 bts (3.4%!!!)

Can we require to ignore this small amount?

If you want to think of trees and oceans?

- Additional CO₂ reduction
 - ✓ Trees: 1.18 bts 12.64 bts × 9.3%(Cement sector share)
 - ✓ Oceans: 0.98 bts 10.55 bts × 9.3% (Cement sector share)

Summary

	CO ₂ emission	CO ₂ reduction
Cement	3.47 bts	—
Hydrogen fuel	—	1.37 bts
SCMs	_	0.25 bts
CC(U)S	_	0.52 bts
Trees, Oceans	_	1.18 + 0.98 bts
Total	3.47 bts	4.30 bts C- negative!

Wildfires Negative Cascading of GW

2023 Canadian wildfires

1.7 bts CO₂ emission (how about Texas fire) *2022 CO₂ emissions in Canada, USA and Japan are 0.52, 4.8 and 1.0bts, respectively. **2019 Fossil fuels(IPCC6thReport)

38.0 bts

***Cement manufacturing

3.47 bts \rightarrow 2.08 if hydrogen is used

US EPA Energy Star Certificate

- 11 cement manufactures received the certificate, a prestigious recognition for being in the top 25% of energy efficiency (global Cement).
- It is important to change wasteful systems, but far from CN.

GX Bond in Japan (2023FY)

Hydrogen iron-manufacture
EV battery manufacture
Low-electricity semiconductor manufacture

"Cement"?

Some plan for hydrogen and CCUS cement manufacture, but slow.

Concluding Remarks

- Cement/concrete technology accumulated over hundreds of years cannot be transformed overnight.
- Low cost has been the basis for conventional technical development. With carbon neutrality demanding a drastic change in the existing technological foundation, there is a need to make drastic changes to the framework of sustainability concerning society, environment, and cost.
- Forget illusion "innovation." Electricity storage technologies will be needed.
- Nuclear fusion generation !?

Proposals

- We should encourage cement makers to change the production method to utilize a traditional wonderful cement for a sustainable human society, in which defossil fuel is used and emitted carbon is captured and used. The steel is the same, (but from blast furnace to electric furnace).
- Then, concrete industry can concentrate on concrete technology.

What is the essence of our history and solution?

- Our ancestors had regarded that the Earth is alive. However, what modern humans have conducted are its exploitation from it, its enclosure and propertization(EEP). (Jeremy Rifkin)
- We are facing to global warming and CN!The solution is very simple to quit EEP

Airbus

ZEROe (zero emission) project Hydrogen-powered commercial plane (2035)

"Sustainability thought is a magic to simply deal with our problems!" "We need to work properly without turmoil for next generation."

Acknowledgements

I thank you, Dr. Takeju Matsuka, for his help on numerical calculations on CO₂.