

SOLUTIONS FOR THE BUILT WORLD

Demonstrating Low Carbon Concrete for Tilt-Up Wall Panel Construction

March 27, 2024

www.wje.com

Thomas Van Dam, Ph.D., P.E., FACI

Acknowledgements

- Direct support through ClimateWorks Foundation and Breakthrough Energy Foundation
- Collaborative effort between Amazon Web Services (AWS), Clayco, Concrete Strategies Inc., Ozinga, and Kienstra Ready Mix
 - All parties donated time and materials to make this a success
- Consulting team included Davies-Crooks Associates, Nichols Consulting Engineers (NCE), Sutter Engineering, Concrete Durability Assoc., Al Innis Consulting, and Wiss Janney Elstner (WJE)

Project Background

- Goal: Demonstrate the use of lower carbon concrete for the construction of tilt-up wall panels used for the construction of AWS data centers
 - Achieve desired concrete properties and the ability to "tilt" in three days
- Three full-scale mock-up tilt-up wall panels utilizing three concrete mixtures with varying degrees of embodied carbon
- Extensive laboratory and field data collected to be shared to facilitate broader adoption of low carbon concrete

Concrete Mixtures

- Mix 1 Control was an ASTM C595 Type IL blended cement mix with proportions commonly used in tilt-up wall construction in AWS Data Centers
 - Estimated embodied carbon 209 kg CO₂ eq from draft EPD
- Mix 2 25% Slag Cement was identical to Mix 1, but 25% of the ASTM C595
 Type IL cement was replaced with ASTM C989 slag cement
 - Estimated carbon reduction is 19% as compared to control from draft EPD
- Mix 3 C1157 contained a proprietary blend of cementitious materials which conforms to ASTM C1157, Standard Performance Specification for Hydraulic Cement
 - Estimated carbon reduction is 52% as compared to control from draft EPDs

Constituent	Description or Source	Units	Mix 1 - Control	Mix 2 - 25% SC	Mix 3 - C1157
Type IL Cement	Holcim St. Gen, MO	lbs/yd³	564	423	
Slag Cement	Holcim, Chicago, IL	lbs/yd³		141	
C1157 cement	Ozinga, Chicago, IL	lbs/yd³			750
Coarse aggregate	Bluff City Materials	lbs/yd³	1775	1780	1740
Fine aggregate	Madison County Sand	lbs/yd³	1420	1400	1240
Water	n/a	lbs/yd ³	271	271	237
High-Range Water Reducer	ADVACAST 600, GCP	fl. oz.	26	26	30
Workability Enhancing Admixture	ADVA XT, GCP	fl. oz.			22
Rheology modifying Admixture	V-MAR F100, GCP	fl. oz.			45
Accelerating Admixture	OZ set	fl. oz.			262.5
<i>w/cm</i> (w/o admixtures)			0.48	0.48	0.32
<i>w/cm</i> (w/ admixtures)			0.48	0.48	0.34
Target Air Content		%	1.5	1.5	1.5

Laboratory Evaluation Program

Fresh concrete properties

- Slump (range: 6 to 8 in; ASTM C143), air content (< 2.5%; ASTM C231), unit weight (ASTM C138) and temperature (ASTM C1064)
- Setting time (ASTM C403), heat of hydration (ASTM C1702), bleeding potential (ASTM C232)
- Hardened concrete properties
 - Compressive strength (ASTM C39), splitting tensile strength (ASTM C469), elastic modulus (ASTM C469), drying shrinkage (ASTM C157), coefficient of thermal expansion (AASHTO T 336), bulk resistivity (AASHTO T 402), and maturity (ASTM C1074)

Laboratory Results: Fresh Properties

Те	st	Unit	Mix 1 - Control	Mix 2 - 25% SC	Mix 3 - C1157
Slump	ASTM C143	in.	7	8	9
Temperature	ASTM C1064	°F	74	74	77
Unit weight	ASTM C138	lb/ft ³	148.7	149.4	150.5
Air content ASTM C231		%	2.0	2.0	2.1
Test		Unit	Mix 1 - Control	Mix 2 - 25% SC	Mix 3 - C1157
Setting time, Initial	ASTM C403	h:mm	3:20	3:15	2:55
Setting time, Final		h:mm	4:40	4:40	7:10

Laboratory Results: Total Heat Generated (J/g)

Sample ID	24 Hours	48 Hours	72 Hours	168 Hours
Mix 1 - Control	195	239	262	292
Mix 2 - 25% SC	165	207	232	269
Mix 3 - C1157	76	92	98	110

Laboratory Results: Bleeding

Compressive Strength

Page 10

Splitting Tensile Strength

Modulus of Elasticity

Laboratory Test Results: Bulk Resistivity (Ohm-m)

Age (days)	Mix 1 - Control	Mix 2 - 25% SC	Mix 3 - C1157	Conditioning
28	64.9	103.1	992.3	100 % R.H (Moist room)
35	52.4	86.6	749.0	Submerged in SPS
56	53.8	92.1	920.2	Submerged in SPS
90	55.2	105.8	973	Submerged in SPS

Summary of Laboratory Properties

- All three mixtures are workable, but the thixotropic properties of Mix
 3 would likely require more effort during placement and finishing
- The low bleed of Mix 3 means early curing will be needed to reduce the risk of plastic shrinkage cracking
- The heat of hydration and early strength gain characteristics suggest that Mixes 1 and 2 will behave similarly
 - Mix 3 may slow construction during cooler temperatures

Summary of Laboratory Results

- The lower early strength gain of Mix 3, coupled with higher stiffness and higher CTE, increases the risk of restrained thermal cracking at early ages
- The lower overall shrinkage of Mix 3 reduces the risk of drying shrinkage cracking at later ages
- Mix 2 has significantly higher resistivity compared to Mix 1, suggesting it is less permeable
 - Resistivity measurements suggest that Mix 3 is significantly less permeable than the other two mixes, although this would need to be further verified through more direct means

The Site

Blasting Ice Off of Slab

Instrumentation

And SmartRocksTM

Fresh Concrete Properties

Property	Mix 1	Mix 2	Mix 3	
Temperature (F)	79	80	73	
Slump (in.)	3.5*	4.25*	9.0	
Air Content (%)	2.3	2.3	3.5	
Unit Weight (lb/ft ³)	152.0	148.2	142.8	

Standard Construction Practices

Standard Construction Practices

Mix #3 Was A Bit Different

Finishing Sequence (in Minutes)

Activity	Mix 1	Mix 2	Mix 3
Screeding	+55	+60	+90
Bull-Floating	+65	+70	+100
1 st Pass	+150	+155	+145
Last Pass	+255	+270	+265
Curing/Protection	+265	+280	+270

And Finishing

Blanket Curing – No Heat

Timing for the Tilt

- Based on compressive and flexural strength
 - Minimum compressive strength 2,500 psi and minimum flexural strength of 500 psi
 - Test cylinders and beams cured on top of panel under blankets
 - Maturity results available
- Targeting tilt for 3 days
 - Mixes #1 and #2 were tilted as planned
 - Mix #3 was tilted at 7 days

Compressive Strength (psi)

Test Age (days)	Mix 1			Mix 2			Mix 3*		
	Standard	Field	Maturity**	Standard	Field	Maturity**	Standard	Field	Maturity**
1	-	-	2,830	-	-	2,210	-	-	370
2	-	5,090	3,580	-	3,710	3,150	-	90	650
3	-	5,230	3,980	-	4,300	3,640	410	440	1,700
4	-	5,470	4,110	-	4 , 420	3,820	-	390	2,400
5	-	-	4,230	-	-	3,990	-	950	2,930
7	5,500	-	4,350	5,290	-	4,160	830	1,760	3,570
14	-	6,050	-	-	6,090	-	-	-	-
29	6,310	6,620	-	6,850	6,940	-	5,030	5,870	-

*Much colder temperatures at the southwest corner of the Panel 3 (location of the field cure cylinders) and inappropriate handling of the cylinders at early ages likely caused significant compromise in the measured compressive strength.

** Average of two maturity probes

Page 30

Flexural Strength (ASTM C78)(psi)

Test Age	Mixı			Mix 2			Mix 3*		
(days)	Standard	Field	Maturity**	Standard	Field	Maturity**	Standard	Field	Maturity**
1	-	-	434	-	-	394	-	-	131
2	-	665	521	-	600	471	-	65	243
3	-	700	566	-	720	513	-	225	351
4	-	-	582	-	-	527	-	-	425
5	-	-	595	-	-	543	-	445	479
7	-	820	601	-	795	547	-	580	512

*Much colder temperatures at the southwest corner of the Panel 3 (location of the field cure cylinders)

** Average of two maturity probes

And Tilt

Takeaways

- Even though the temperatures at casting were not ideal, all mixtures could be pumped, placed, finished and tilted
 - Mix #2 was the favorite of the crew
 - Mix #3 was not popular
- Match curing was discussed as an alternative to placing test specimen on top of panels
- Maturity was considered successful
- Thought having summer and winter mixes might be needed as carbon reduction targets become more aggressive

Thanks

Thomas Van Dam, Ph.D., P.E., FACI Principal

Wiss, Janney, Elstner Associates, Inc.

Engineers | Architects | Materials Scientists 330 Pfingsten Road, Northbrook, Illinois 60062 tel 847.272.7400 | fax 847.291.9599 direct 847.753.6345 | mobile 775.527.2524 www.wje.com

tvandam@wje.com